ESP8266: Always call ‘wifi_wps_enable’ before ‘wifi_set_wps_cb’

For WPS to work on the ESP8266 and using the non-OS SDK, be sure to call wifi_wps_enable() before setting the callback function with wifi_set_wps_cb().

For example:

void wps_start()
{
    wifi_wps_enable(WPS_TYPE_PBC);
    wifi_set_wps_cb(wps_callback);
    wifi_wps_start();
}

In the callback itself, call wifi_wps_disable() before wifi_station_connect().

For example:

void wps_callback(int status)
{
    wifi_wps_disable();
    wifi_station_connect();
}

ESP8266: Flash images at more than 115200 bps

If esptool is limited to 115200 bps when flashing your firmware to an ESP8266, you can try to increase the bitrate by following the steps below.

  1. Locate esptool.py for your installation. On Debian and Ubuntu, this file is located in /usr/share/esptool.
  2. Edit esptool.py and change the value on the line starting with ESP_ROM_BAUD from 115200 to the maximum of 921600 or your preferred baud rate.

ESP8266: Always call `uart_init` before `gpio_init`

I don’t remember if this information is in the documentation, but having spent a few hours to figure things out, I think it is important to record it here.

For example:

void ICACHE_FLASH_ATTR user_init(void)
{
    /*
     * Always call uart_init() before gpio_init()
     */
    uart_init(BIT_RATE_115200, BIT_RATE_115200);

    gpio_init();
    PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
    PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0);
    GPIO_DIS_OUTPUT(BUTTON_PIN);

    os_timer_disarm(&os_timer);
    os_timer_setfn(&os_timer, &main_on_timer, (void *)NULL);
    os_timer_arm(&os_timer, 50, 1);
}

Remember, C# does not have an exponent operator

I want to share an anecdote of confusing programming language features as a caution to my fellow programmers.

Reviewing our application logs, I noticed that the API requests were interspersed with pauses of irregular durations. The interval between each successful request is supposed to be fixed; and the interval between each failed request, exponentially growing up to a configured maximum. For example, after the first failure, the application pauses for 5 seconds; after the second, 10 seconds; after the third, 20 seconds; and so on. However, the logs showed intervals of 15 seconds, 30 seconds, 60 seconds, then 0 second—this was odd, especially the last 0 second.

This behaviour remained a mystery even after a colleague helped me look for errors in our C# code. We reviewed this line of code together but found nothing wrong; it clearly showed that on every retry the base interval was doubled.

int tmp = RetryIntervalInMs * (2 ^ retryCounter);

By coincidence, I needed the same calculation of intervals in my hobby embedded project. As I started to write the code that evening, I made an epiphanic realisation.

In our C# code, we had used the ^ operator, interpreting it as raised to the power of. This is true in some languages – BASIC, for example ­– but not in C#, where it is actually the operator for XOR. I was amazed that this mistake escaped our scrutiny..

Once we had identified the cause, it was easy to fix the error by using the correct library method Math.Pow(int, int).

int tmp = RetryIntervalInMs * (int)Math.Pow(2, retryCounter);

Avoiding time drift in virtual machines

If you use a virtual machine, you might notice that its system time starts to lag after it has been powered on for a while. To solve this problem, it is useful to run an NTP (Network Time Prococol) client within the VM to have its time synchronised regularly.

On Windows, automatic time synchronisation is enabled by default and uses the server time.windows.com.

On a Debian-based Linux distribution, you can install NTP with apt install ntp and start it with sudo systemctl start ntp.

Caveat with AddInitialRequestCultureProvider() in ASP.NET Core

AddInitialRequestCultureProvider() in ASP.NET Core localisation seems to have an undefined behaviour when it is used in both services and application builder configurations to add a custom RequestCultureProvider.

If you want to use a custom RequestCultureProvider to customise how the applicable culture is determined for an incoming HTTP request (for example, by looking up the chosen culture of a user in the database), you must configure the provider in the services collection as described in the section ‘Use a custom provider’.

You must also call IApplicationBuilder.UseRequestLocalization(), but you must not pass any argument to the method. If a RequestLocalizationOptions argument is specified here, it supersedes what is configured in the services collection, and your custom RequestCultureProvider does not work.

Typically, you configure the middleware in the application builder before the services. But in order to emphasise the significance of setting the localisation options only in the services configuration, I have reversed this order on purpose.

How can you minimize the impact of the persistence layer on your domain models?

This post answers the question ‘How can you minimize the impact of the persistence layer on your domain models?’ posted on reddit /r/dotnet, showing how I would implement a solution in the purest OOP [sic] possible with C#.

(Note: The factory and persistence classes are simplified for demonstration purposes.)

So here is the code. It is tested with .NET 5 on Windows 10.

using System;
using System.Data;
using System.Diagnostics;

namespace Example.Domain
{
    // Let's pretend this namespace is in a separate assembly so that
    // the 'internal' scope modifier applies

    public interface IAccount
    {
	string Username { get; }

	bool IsEnabled { get; }

	void Disable();
    }

    public interface ISavedAccount : IAccount
    {
	int Id { get; }
	
	void Enable();
    }

    // Not accessible from outside assembly
    internal abstract class AccountBase : IAccount
    {
	public string Username { get; protected set; }

	public bool IsEnabled { get; protected set; }

	internal AccountBase(string username)
	{
	    Username = username;
	}

	public void Disable()
	{
	    IsEnabled = false;
	}
    }

    // Not accessible from outside assembly
    internal class MyAccount : AccountBase
    {
	internal MyAccount(string username)
	    : base(username)
	{
	}
    }

    // Not accessible from outside assembly
    internal class MySavedAccount : AccountBase, ISavedAccount
    {
	public int Id { get; private set; }

	internal MySavedAccount(int id, string username, bool isEnabled)
	    : base(username)
	{
	    Id = id;
	    if (isEnabled) 
	    {
		Enable();
	    }
	}

	public void Enable()
	{
	    IsEnabled = true;
	}
    }

    public static class AccountFactory
    {
	public static IAccount Create(string username)
	{
	    return new MyAccount(username);
	}

	public static ISavedAccount Create(int id, string username, bool isEnabled)
	{
	    return new MySavedAccount(id, username, isEnabled);
	}
    }
}

namespace Example.Persistence
{
    using Example.Domain;

    public static class AccountStorage
    {
	static readonly DataTable dt;

	static AccountStorage()
	{
	    dt = new DataTable();
	    dt.Columns.Add("id", typeof(int));
	    dt.Columns.Add("username", typeof(string));
	    dt.Columns.Add("enabled", typeof(bool));
	}

	public static DataRow AddAccountRow(ref IAccount account)
	{
	    var dr = dt.NewRow();
	    dr["id"] = dt.Rows.Count+1;
	    dr["username"] = account.Username;
	    dr["enabled"] = account.IsEnabled;
	    dt.Rows.Add(dr);

	    // This variable does not point to a valid account after it has been saved
	    account = null;

	    return dr;
	}

	public static DataRow UpdateAccountRow(ISavedAccount account)
	{
	    var dr = FindAccountRow(account.Id);
	    dr["username"] = account.Username;
	    dr["enabled"] = account.IsEnabled;
	    return dr;
	}

	public static DataRow FindAccountRow(int id)
	{
	    for (var i=0; i<dt.Rows.Count; ++i)
	    {
		DataRow dr = dt.Rows[i];
		if (((int)dr["id"]) == id)
		{
		    return dr;
		}
	    }
	    return null;
	}
    }
}

namespace Example.Client
{
    // Let's pretend this namespace is in a separate assembly so that it
    // doesn't see the 'internal' definitions from the Example.Domain
    // namespace

    using Example.Domain;
    using Example.Persistence;

    class Program
    {
        static void Main(string[] args)
        {
	    var account = AccountFactory.Create("joebloggs");

	    // FAIL! A new account does not have an id
	    // Debug.Assert(account.Id > 0);

	    // FAIL! A new account cannot be enabled
	    // account.Enable();

	    var newrow = AccountStorage.AddAccountRow(ref account);

            Debug.Assert(account == null, "The account object is no longer valid");

	    Debug.Assert(((int)newrow["id"]) > 0, "The 'id' value is set");
	    Debug.Assert("joebloggs".Equals(newrow["username"]), "The 'username' value is set");
	    Debug.Assert(! (bool)newrow["enabled"], "The 'enabled' value is not set");

	    var savedaccount = AccountFactory.Create((int)newrow["id"], (string)newrow["username"], (bool)newrow["enabled"]);
	    savedaccount.Enable();
	    Debug.Assert(savedaccount.IsEnabled, "The account is enabled");

	    var unused = AccountStorage.UpdateAccountRow(savedaccount);

	    var loadedrow = AccountStorage.FindAccountRow(savedaccount.Id);
	    var loaded = AccountFactory.Create((int)loadedrow["id"], (string)loadedrow["username"], (bool)loadedrow["enabled"]);

	    Debug.Assert(loaded.Id > 0, "An id is assigned");
	    Debug.Assert("joebloggs".Equals(loaded.Username), "The username is set correctly");
	    Debug.Assert(loaded.IsEnabled, "The account is enabled");
        }
    }
}

The line below could be questionable because we pass ownership of object account to the persistence layer, but we could also assume that there is a contract that formalises this.

	    // This variable does not point to a valid account after it has been saved
	    account = null;